Component Instances - Latest¶
ComponentInstancesLatest(perfdb)
¶
Class used for handling the latest installed component instances. Can be accessed via perfdb.components.instances.latest.
Parameters:
Source code in echo_postgres/perfdb_root.py
def __init__(self, perfdb: e_pg.PerfDB) -> None:
"""Base class that all subclasses should inherit from.
Parameters
----------
perfdb : PerfDB
Top level object carrying all functionality and the connection handler.
"""
self._perfdb: e_pg.PerfDB = perfdb
get(object_names=None, component_ids=None, component_serial_numbers=None, component_batches=None, component_models=None, component_manufacturers=None, component_types=None, locations=None, filter_type='and', get_attributes=False, output_type='DataFrame')
¶
Gets components instances latest (including dates when they were installed and removed).
The most useful keys/columns returned are:
- object_id
- object_name
- component_type_id
- component_type_name
- manufacturer_id
- manufacturer_name
- component_model_id
- component_model_name
- location_id
- location_name
- component_instance_id
- serial_number
- batch
- installation_date
- duration
Parameters:
-
(object_names¶list[str] | None, default:None) –List of object names to filter the results. By default None.
-
(component_ids¶list[int] | None, default:None) –List of component ids to filter the results. By default None.
-
(component_serial_numbers¶list[str] | None, default:None) –List of component serial numbers to filter the results. By default None.
-
(component_batches¶list[str] | None, default:None) –List of component batches to filter the results. By default None.
-
(component_models¶list[str] | None, default:None) –List of component model names to filter the results. By default None.
-
(component_manufacturers¶list[str] | None, default:None) –List of component manufacturer names to filter the results. By default None.
-
(component_types¶list[str] | None, default:None) –List of component type names to filter the results. By default None.
-
(locations¶list[str] | None, default:None) –List of locations to filter the results. By default None.
-
(filter_type¶Literal['and', 'or'], default:'and') –How to treat multiple filters. Can be one of ["and", "or"]. By default "and"
-
(get_attributes¶bool, default:False) –If True, will also get the attributes of the component models.
-
(output_type¶Literal['dict', 'DataFrame'], default:'DataFrame') –Output type of the data. Can be one of ["dict", "DataFrame"] By default "DataFrame"
Returns:
-
dict[str, dict[str, dict[str, Any]]]–Dictionary on the format {"object_name": {"component_type_name": {"location_name": {"attribute": value, ...}, ...}, ...}, ...}
-
DataFrame–DataFrame with the latest component instances. Index is a MultiIndex with levels "object_name", "component_type_name", "location_name"
Source code in echo_postgres/component_instances_latest.py
@validate_call
def get(
self,
object_names: list[str] | None = None,
component_ids: list[int] | None = None,
component_serial_numbers: list[str] | None = None,
component_batches: list[str] | None = None,
component_models: list[str] | None = None,
component_manufacturers: list[str] | None = None,
component_types: list[str] | None = None,
locations: list[str] | None = None,
filter_type: Literal["and", "or"] = "and",
get_attributes: bool = False,
output_type: Literal["dict", "DataFrame"] = "DataFrame",
) -> dict[str, dict[str, dict[str, Any]]] | DataFrame:
"""Gets components instances latest (including dates when they were installed and removed).
The most useful keys/columns returned are:
- object_id
- object_name
- component_type_id
- component_type_name
- manufacturer_id
- manufacturer_name
- component_model_id
- component_model_name
- location_id
- location_name
- component_instance_id
- serial_number
- batch
- installation_date
- duration
Parameters
----------
object_names : list[str] | None, optional
List of object names to filter the results. By default None.
component_ids : list[int] | None, optional
List of component ids to filter the results. By default None.
component_serial_numbers : list[str] | None, optional
List of component serial numbers to filter the results. By default None.
component_batches : list[str] | None, optional
List of component batches to filter the results. By default None.
component_models : list[str] | None, optional
List of component model names to filter the results. By default None.
component_manufacturers : list[str] | None, optional
List of component manufacturer names to filter the results. By default None.
component_types : list[str] | None, optional
List of component type names to filter the results. By default None.
locations : list[str] | None, optional
List of locations to filter the results. By default None.
filter_type : Literal["and", "or"], optional
How to treat multiple filters. Can be one of ["and", "or"]. By default "and"
get_attributes : bool, optional
If True, will also get the attributes of the component models.
output_type : Literal["dict", "DataFrame"], optional
Output type of the data. Can be one of ["dict", "DataFrame"]
By default "DataFrame"
Returns
-------
dict[str, dict[str, dict[str, Any]]]
Dictionary on the format {"object_name": {"component_type_name": {"location_name": {"attribute": value, ...}, ...}, ...}, ...}
DataFrame
DataFrame with the latest component instances. Index is a MultiIndex with levels "object_name", "component_type_name", "location_name"
"""
where = self._check_get_args(
object_names=object_names,
component_ids=component_ids,
component_serial_numbers=component_serial_numbers,
component_batches=component_batches,
component_models=component_models,
component_manufacturers=component_manufacturers,
component_types=component_types,
locations=locations,
filter_type=filter_type,
)
query = [
sql.SQL("SELECT * FROM performance.v_component_instance_latest "),
where,
sql.SQL(" ORDER BY object_name, component_type_name, location_name"),
]
query = sql.Composed(query)
with self._perfdb.conn.reconnect() as conn:
df = conn.read_to_pandas(query)
# getting attributes
if get_attributes:
df = df.set_index("component_instance_id")
# names of the component models
got_component_instances = df.index.tolist()
attrs: DataFrame = self._perfdb.components.instances.attributes.get(
component_ids=got_component_instances,
output_type="DataFrame",
values_only=True,
)
# pivot the attributes
attrs = attrs.reset_index(drop=False).pivot(index="component_instance_id", columns="attribute_name", values="attribute_value")
# merging the attributes with the component models
df = df.merge(attrs, left_index=True, right_index=True, how="left")
# resetting the index
df = df.reset_index(drop=False)
# defining object_name, component_type_name and location_name as the index
df = df.set_index(["object_name", "component_type_name", "location_name"])
if output_type == "dict":
result = df.to_dict(orient="index")
final_result = {}
for (object_name, component_type_name, location_name), values in result.items():
if object_name not in final_result:
final_result[object_name] = {}
if component_type_name not in final_result[object_name]:
final_result[object_name][component_type_name] = {}
final_result[object_name][component_type_name][None if isna(location_name) else location_name] = values
return final_result
return df