Skip to content

Component Models

ComponentModels(perfdb)

Class used for handling component models. Can be accessed via perfdb.components.models.

Parameters:

  • perfdb

    (PerfDB) –

    Top level object carrying all functionality and the connection handler.

Source code in echo_postgres/component_models.py
def __init__(self, perfdb: e_pg.PerfDB) -> None:
    """Class used for handling component models.

    Parameters
    ----------
    perfdb : PerfDB
        Top level object carrying all functionality and the connection handler.
    """
    super().__init__(perfdb)

    from .component_model_attributes import ComponentModelAttributes

    # * subclasses

    self.attributes = ComponentModelAttributes(perfdb)

get(component_models=None, component_types=None, manufacturers=None, filter_type='and', get_attributes=False, output_type='dict')

Gets all component models definitions with detailed information.

The most useful keys/columns returned are:

  • id
  • description
  • component_type_id
  • component_type_name
  • manufacturer_id
  • manufacturer_name

Parameters:

  • component_models

    (list[str] | None, default: None ) –

    Name of the component models to filter the results, by default None

  • component_types

    (list[str] | None, default: None ) –

    Name of the component types to filter the results, by default None

  • manufacturers

    (list[str] | None, default: None ) –

    Name of the manufacturers to filter the results, by default None

  • filter_type

    (Literal['and', 'or'], default: 'and' ) –

    How to treat multiple filters. Can be one of ["and", "or"]. By default "and"

  • get_attributes

    (bool, default: False ) –

    If True, will also get the attributes of the component models.

  • output_type

    (Literal['dict', 'DataFrame'], default: 'dict' ) –

    Output type of the data. Can be one of ["dict", "DataFrame"] By default "dict"

Returns:

  • dict[str, dict[str, Any]]

    In case output_type is "dict", returns a dictionary in the format {name: {attribute: value, ...}, ...}

  • DataFrame

    In case output_type is "DataFrame", returns a DataFrame with the following format: index = name, columns = [attribute, ...]

Source code in echo_postgres/component_models.py
@validate_call
def get(
    self,
    component_models: list[str] | None = None,
    component_types: list[str] | None = None,
    manufacturers: list[str] | None = None,
    filter_type: Literal["and", "or"] = "and",
    get_attributes: bool = False,
    output_type: Literal["dict", "DataFrame"] = "dict",
) -> dict[str, int]:
    """Gets all component models definitions with detailed information.

    The most useful keys/columns returned are:

    - id
    - description
    - component_type_id
    - component_type_name
    - manufacturer_id
    - manufacturer_name

    Parameters
    ----------
    component_models : list[str] | None, optional
        Name of the component models to filter the results, by default None
    component_types : list[str] | None, optional
        Name of the component types to filter the results, by default None
    manufacturers : list[str] | None, optional
        Name of the manufacturers to filter the results, by default None
    filter_type : Literal["and", "or"], optional
        How to treat multiple filters. Can be one of ["and", "or"]. By default "and"
    get_attributes : bool, optional
        If True, will also get the attributes of the component models.
    output_type : Literal["dict", "DataFrame"], optional
        Output type of the data. Can be one of ["dict", "DataFrame"]
        By default "dict"

    Returns
    -------
    dict[str, dict[str, Any]]
        In case output_type is "dict", returns a dictionary in the format {name: {attribute: value, ...}, ...}
    DataFrame
        In case output_type is "DataFrame", returns a DataFrame with the following format: index = name, columns = [attribute, ...]
    """
    where = self._check_get_args(
        component_models=component_models,
        component_types=component_types,
        filter_type=filter_type,
        manufacturers=manufacturers,
    )

    query = [
        sql.SQL("SELECT * FROM performance.v_component_models "),
        where,
        sql.SQL(" ORDER BY name"),
    ]
    query = sql.Composed(query)

    with self._perfdb.conn.reconnect() as conn:
        df = conn.read_to_pandas(query)

    df = df.set_index("name")

    # getting attributes
    if get_attributes:
        # names of the component models
        got_component_models = df.index.tolist()
        attrs: DataFrame = self._perfdb.components.models.attributes.get(
            component_models=got_component_models,
            output_type="DataFrame",
            values_only=True,
        )
        if attrs.empty:
            logger.debug("No attributes found")
        else:
            # pivot the attributes
            attrs = attrs.reset_index(drop=False).pivot(
                index="component_model_name",
                columns="attribute_name",
                values="attribute_value",
            )
            # merging the attributes with the component models
            df = df.merge(attrs, left_index=True, right_index=True, how="left")

    return df.to_dict(orient="index") if output_type == "dict" else df

get_ids(component_models=None, component_types=None, manufacturers=None, filter_type='and')

Method used to get all component models and their respective ids.

Parameters:

  • component_models

    (list[str] | None, default: None ) –

    Name of the component models to filter the results, by default None

  • component_types

    (list[str] | None, default: None ) –

    Name of the component types to filter the results, by default None

  • manufacturers

    (list[str] | None, default: None ) –

    Name of the manufacturers to filter the results, by default None

  • filter_type

    (Literal['and', 'or'], default: 'and' ) –

    How to treat multiple filters. Can be one of ["and", "or"]. By default "and"

Returns:

  • dict[str, int]

    Dictionary with all component models and their respective ids in the format {component_model: id, ...}.

Source code in echo_postgres/component_models.py
@validate_call
def get_ids(
    self,
    component_models: list[str] | None = None,
    component_types: list[str] | None = None,
    manufacturers: list[str] | None = None,
    filter_type: Literal["and", "or"] = "and",
) -> dict[str, int]:
    """Method used to get all component models and their respective ids.

    Parameters
    ----------
    component_models : list[str] | None, optional
        Name of the component models to filter the results, by default None
    component_types : list[str] | None, optional
        Name of the component types to filter the results, by default None
    manufacturers : list[str] | None, optional
        Name of the manufacturers to filter the results, by default None
    filter_type : Literal["and", "or"], optional
        How to treat multiple filters. Can be one of ["and", "or"]. By default "and"

    Returns
    -------
    dict[str, int]
        Dictionary with all component models and their respective ids in the format {component_model: id, ...}.
    """
    # checking inputs
    where = self._check_get_args(
        component_models=component_models,
        component_types=component_types,
        filter_type=filter_type,
        manufacturers=manufacturers,
    )

    query = [
        sql.SQL("SELECT name, id FROM performance.v_component_models "),
        where,
        sql.SQL(" ORDER BY name"),
    ]
    query = sql.Composed(query)

    with self._perfdb.conn.reconnect() as conn:
        df = conn.read_to_pandas(query)

    return df.set_index("name").to_dict()["id"]