Component Models¶
ComponentModels(perfdb)
¶
Class used for handling component models. Can be accessed via perfdb.components.models.
Parameters:
Source code in echo_postgres/component_models.py
def __init__(self, perfdb: e_pg.PerfDB) -> None:
"""Class used for handling component models.
Parameters
----------
perfdb : PerfDB
Top level object carrying all functionality and the connection handler.
"""
super().__init__(perfdb)
from .component_model_attributes import ComponentModelAttributes
# * subclasses
self.attributes = ComponentModelAttributes(perfdb)
get(component_models=None, component_types=None, manufacturers=None, filter_type='and', get_attributes=False, output_type='dict')
¶
Gets all component models definitions with detailed information.
The most useful keys/columns returned are:
- id
- description
- component_type_id
- component_type_name
- manufacturer_id
- manufacturer_name
Parameters:
-
(component_models¶list[str] | None, default:None) –Name of the component models to filter the results, by default None
-
(component_types¶list[str] | None, default:None) –Name of the component types to filter the results, by default None
-
(manufacturers¶list[str] | None, default:None) –Name of the manufacturers to filter the results, by default None
-
(filter_type¶Literal['and', 'or'], default:'and') –How to treat multiple filters. Can be one of ["and", "or"]. By default "and"
-
(get_attributes¶bool, default:False) –If True, will also get the attributes of the component models.
-
(output_type¶Literal['dict', 'DataFrame'], default:'dict') –Output type of the data. Can be one of ["dict", "DataFrame"] By default "dict"
Returns:
-
dict[str, dict[str, Any]]–In case output_type is "dict", returns a dictionary in the format {name: {attribute: value, ...}, ...}
-
DataFrame–In case output_type is "DataFrame", returns a DataFrame with the following format: index = name, columns = [attribute, ...]
Source code in echo_postgres/component_models.py
@validate_call
def get(
self,
component_models: list[str] | None = None,
component_types: list[str] | None = None,
manufacturers: list[str] | None = None,
filter_type: Literal["and", "or"] = "and",
get_attributes: bool = False,
output_type: Literal["dict", "DataFrame"] = "dict",
) -> dict[str, int]:
"""Gets all component models definitions with detailed information.
The most useful keys/columns returned are:
- id
- description
- component_type_id
- component_type_name
- manufacturer_id
- manufacturer_name
Parameters
----------
component_models : list[str] | None, optional
Name of the component models to filter the results, by default None
component_types : list[str] | None, optional
Name of the component types to filter the results, by default None
manufacturers : list[str] | None, optional
Name of the manufacturers to filter the results, by default None
filter_type : Literal["and", "or"], optional
How to treat multiple filters. Can be one of ["and", "or"]. By default "and"
get_attributes : bool, optional
If True, will also get the attributes of the component models.
output_type : Literal["dict", "DataFrame"], optional
Output type of the data. Can be one of ["dict", "DataFrame"]
By default "dict"
Returns
-------
dict[str, dict[str, Any]]
In case output_type is "dict", returns a dictionary in the format {name: {attribute: value, ...}, ...}
DataFrame
In case output_type is "DataFrame", returns a DataFrame with the following format: index = name, columns = [attribute, ...]
"""
where = self._check_get_args(
component_models=component_models,
component_types=component_types,
filter_type=filter_type,
manufacturers=manufacturers,
)
query = [
sql.SQL("SELECT * FROM performance.v_component_models "),
where,
sql.SQL(" ORDER BY name"),
]
query = sql.Composed(query)
with self._perfdb.conn.reconnect() as conn:
df = conn.read_to_pandas(query)
df = df.set_index("name")
# getting attributes
if get_attributes:
# names of the component models
got_component_models = df.index.tolist()
attrs: DataFrame = self._perfdb.components.models.attributes.get(
component_models=got_component_models,
output_type="DataFrame",
values_only=True,
)
if attrs.empty:
logger.debug("No attributes found")
else:
# pivot the attributes
attrs = attrs.reset_index(drop=False).pivot(
index="component_model_name",
columns="attribute_name",
values="attribute_value",
)
# merging the attributes with the component models
df = df.merge(attrs, left_index=True, right_index=True, how="left")
return df.to_dict(orient="index") if output_type == "dict" else df
get_ids(component_models=None, component_types=None, manufacturers=None, filter_type='and')
¶
Method used to get all component models and their respective ids.
Parameters:
-
(component_models¶list[str] | None, default:None) –Name of the component models to filter the results, by default None
-
(component_types¶list[str] | None, default:None) –Name of the component types to filter the results, by default None
-
(manufacturers¶list[str] | None, default:None) –Name of the manufacturers to filter the results, by default None
-
(filter_type¶Literal['and', 'or'], default:'and') –How to treat multiple filters. Can be one of ["and", "or"]. By default "and"
Returns:
-
dict[str, int]–Dictionary with all component models and their respective ids in the format {component_model: id, ...}.
Source code in echo_postgres/component_models.py
@validate_call
def get_ids(
self,
component_models: list[str] | None = None,
component_types: list[str] | None = None,
manufacturers: list[str] | None = None,
filter_type: Literal["and", "or"] = "and",
) -> dict[str, int]:
"""Method used to get all component models and their respective ids.
Parameters
----------
component_models : list[str] | None, optional
Name of the component models to filter the results, by default None
component_types : list[str] | None, optional
Name of the component types to filter the results, by default None
manufacturers : list[str] | None, optional
Name of the manufacturers to filter the results, by default None
filter_type : Literal["and", "or"], optional
How to treat multiple filters. Can be one of ["and", "or"]. By default "and"
Returns
-------
dict[str, int]
Dictionary with all component models and their respective ids in the format {component_model: id, ...}.
"""
# checking inputs
where = self._check_get_args(
component_models=component_models,
component_types=component_types,
filter_type=filter_type,
manufacturers=manufacturers,
)
query = [
sql.SQL("SELECT name, id FROM performance.v_component_models "),
where,
sql.SQL(" ORDER BY name"),
]
query = sql.Composed(query)
with self._perfdb.conn.reconnect() as conn:
df = conn.read_to_pandas(query)
return df.set_index("name").to_dict()["id"]