Skip to content

KPI Capacity Factor Targets

KpiCapacityFactorTargets(perfdb)

Class used for handling capacity factor targets.

Parameters:

  • perfdb

    (PerfDB) –

    Top level object carrying all functionality and the connection handler.

Source code in echo_postgres/perfdb_root.py
def __init__(self, perfdb: e_pg.PerfDB) -> None:
    """Base class that all subclasses should inherit from.

    Parameters
    ----------
    perfdb : PerfDB
        Top level object carrying all functionality and the connection handler.

    """
    self._perfdb: e_pg.PerfDB = perfdb

get(period, time_res='daily', aggregation_window=None, object_or_group_names=None, object_group_types=None, measurement_points=None, filter_type='and', output_type='DataFrame', values_only=False)

Gets capacity factor targets for the desired period and objects.

The most useful keys/columns returned are:

  • capacity_factor

Parameters:

  • period

    (DateTimeRange) –

    Period of time to get the data for.

  • time_res

    (Literal['daily', 'monthly', 'quarterly', 'yearly'], default: 'daily' ) –

    Time resolution of the data. Can be one of ["daily", "monthly", "quarterly", "yearly"], by default "daily"

  • aggregation_window

    (Literal['mtd', 'ytd', '12m'] | None, default: None ) –

    Aggregation window to use. Can be one of ["mtd", "ytd", "12m"], by default None

  • object_or_group_names

    (list[str], default: None ) –

    List of object or group names to get the data for. By default None

  • object_group_types

    (list[str], default: None ) –

    List of object group types to get the data for. By default None

  • measurement_points

    (list[ALLOWED_MEASUREMENT_POINTS], default: None ) –

    List of measurement points to get the data for, like Connection Point, Gravity Center, Asset, etc. By default None

  • filter_type

    (Literal['and', 'or'], default: 'and' ) –

    How to treat multiple filters. Can be one of ["and", "or"]. By default "and"

  • output_type

    (Literal['dict', 'DataFrame'], default: 'DataFrame' ) –

    Output type of the data. Can be one of ["dict", "DataFrame"] By default "dict"

  • values_only

    (bool, default: False ) –

    If set to True, when returning a dict will only return the targets, ignoring other attributes like modified_date. Is ignored when output_type is "DataFrame". By default False

Returns:

  • DataFrame

    In case output_type is "DataFrame", returns a DataFrame with the following format: index = MultiIndex["group_type_name", "object_or_group_name", "measurement_point_name", "date"], columns = [target, modified_date]

  • dict[str, dict[Timestamp, dict[str, dict[str, Any]]]]

    In case output_type is "dict", returns a dictionary in the format {group_type_name: {object_or_group_name: {measurement_point: {date: {attribute: value, ...}, ...}, ...}, ...}

Source code in echo_postgres/kpi_capacityfactor_targets.py
@validate_call
def get(
    self,
    period: DateTimeRange,
    time_res: Literal["daily", "monthly", "quarterly", "yearly"] = "daily",
    aggregation_window: Literal["mtd", "ytd", "12m"] | None = None,
    object_or_group_names: list[str] | None = None,
    object_group_types: list[str] | None = None,
    measurement_points: list[ALLOWED_MEASUREMENT_POINTS] | None = None,
    filter_type: Literal["and", "or"] = "and",
    output_type: Literal["dict", "DataFrame"] = "DataFrame",
    values_only: bool = False,
) -> DataFrame | dict[str, dict[Timestamp, dict[str, dict[str, Any]]]]:
    """Gets capacity factor targets for the desired period and objects.

    The most useful keys/columns returned are:

    - capacity_factor

    Parameters
    ----------
    period : DateTimeRange
        Period of time to get the data for.
    time_res : Literal["daily", "monthly", "quarterly", "yearly"], optional
        Time resolution of the data. Can be one of ["daily", "monthly", "quarterly", "yearly"], by default "daily"
    aggregation_window : Literal["mtd", "ytd", "12m"] | None, optional
        Aggregation window to use. Can be one of ["mtd", "ytd", "12m"], by default None
    object_or_group_names : list[str], optional
        List of object or group names to get the data for. By default None
    object_group_types : list[str], optional
        List of object group types to get the data for. By default None
    measurement_points : list[ALLOWED_MEASUREMENT_POINTS], optional
        List of measurement points to get the data for, like Connection Point, Gravity Center, Asset, etc. By default None
    filter_type : Literal["and", "or"], optional
        How to treat multiple filters. Can be one of ["and", "or"].
        By default "and"
    output_type : Literal["dict", "DataFrame"], optional
        Output type of the data. Can be one of ["dict", "DataFrame"]
        By default "dict"
    values_only : bool, optional
        If set to True, when returning a dict will only return the targets, ignoring other attributes like modified_date. Is ignored when output_type is "DataFrame". By default False

    Returns
    -------
    DataFrame
        In case output_type is "DataFrame", returns a DataFrame with the following format: index = MultiIndex["group_type_name", "object_or_group_name", "measurement_point_name", "date"], columns = [target, modified_date]
    dict[str, dict[Timestamp, dict[str, dict[str, Any]]]]
        In case output_type is "dict", returns a dictionary in the format {group_type_name: {object_or_group_name: {measurement_point: {date: {attribute: value, ...}, ...}, ...}, ...}
    """
    # build the query
    query = [
        sql.SQL(
            "SELECT * FROM performance.{table} WHERE (date >= {start} AND date <= {end}) AND target IS NOT NULL ",
        ).format(
            table=sql.Identifier(
                f"mv_capacityfactor_{time_res}{f'_{aggregation_window}' if aggregation_window else ''}",
            ),
            start=sql.Literal(f"{period.start:%Y-%m-%d %H:%M:%S}"),
            end=sql.Literal(f"{period.end:%Y-%m-%d %H:%M:%S}"),
        ),
    ]

    where = []
    if object_or_group_names:
        where.append(
            sql.SQL("object_or_group_name IN ({names})").format(
                names=sql.SQL(", ").join(map(sql.Literal, object_or_group_names)),
            ),
        )
    if object_group_types:
        where.append(
            sql.SQL("group_type_name IN ({names})").format(
                names=sql.SQL(", ").join(map(sql.Literal, object_group_types)),
            ),
        )
    if measurement_points:
        where.append(
            sql.SQL("measurement_point_name IN ({points})").format(
                points=sql.SQL(", ").join(map(sql.Literal, measurement_points)),
            ),
        )

    if where:
        query.append(sql.SQL(" AND ("))
        query.append(sql.SQL(f" {filter_type.upper()} ").join(where))
        query.append(sql.SQL(")"))

    query.append(sql.SQL(" ORDER BY object_or_group_name, group_type_name, date"))

    query = sql.Composed(query)

    with self._perfdb.conn.reconnect() as conn:
        df = conn.read_to_pandas(query, post_convert="pyarrow")
    # forcing date to be a Timestamp
    df["date"] = df["date"].astype("datetime64[s]")
    # forcing object_name and object_group_name to be a string
    df = df.astype(
        {"object_or_group_name": "string[pyarrow]", "group_type_name": "string[pyarrow]"},
    )
    df = df.astype(
        {"object_or_group_id": "int64[pyarrow]", "group_type_id": "int64[pyarrow]"},
    )

    df = df.set_index(["group_type_name", "object_or_group_name", "measurement_point_name", "date"])

    # dropping value column
    df = df.drop(columns=["value"], errors="ignore")

    if output_type == "DataFrame":
        return df

    # dropping id columns not used in dict format
    df = df.drop(columns=[col for col in df.columns if col.endswith("_id")])
    # converting to Dict
    result = df.to_dict(orient="index")
    final_result = {}
    for (object_group_type_name, object_or_group_name, measurement_point_name, date), data in result.items():
        if object_group_type_name not in final_result:
            final_result[object_group_type_name] = {}
        if object_or_group_name not in final_result[object_group_type_name]:
            final_result[object_group_type_name][object_or_group_name] = {}
        if measurement_point_name not in final_result[object_group_type_name][object_or_group_name]:
            final_result[object_group_type_name][object_or_group_name][measurement_point_name] = {}
        if date not in final_result[object_group_type_name][object_or_group_name]:
            final_result[object_group_type_name][object_or_group_name][measurement_point_name][date] = (
                data["target"] if values_only else data
            )

    return final_result