Skip to content

KPI Energy Targets

KpiEnergyTargets(perfdb)

Class used for handling energy targets. Can be accessed via perfdb.kpis.energy.targets.

Parameters:

  • perfdb

    (PerfDB) –

    Top level object carrying all functionality and the connection handler.

Source code in echo_postgres/perfdb_root.py
def __init__(self, perfdb: e_pg.PerfDB) -> None:
    """Base class that all subclasses should inherit from.

    Parameters
    ----------
    perfdb : PerfDB
        Top level object carrying all functionality and the connection handler.

    """
    self._perfdb: e_pg.PerfDB = perfdb

delete(period, object_names=None)

Deletes energy targets from the database.

Parameters:

  • period

    (DateTimeRange) –

    Period of time to delete the data for.

  • object_names

    (list[str], default: None ) –

    List of object names to delete the data for. By default None

Source code in echo_postgres/kpi_energy_targets.py
@validate_call
def delete(
    self,
    period: DateTimeRange,
    object_names: list[str] | None = None,
) -> None:
    """Deletes energy targets from the database.

    Parameters
    ----------
    period : DateTimeRange
        Period of time to delete the data for.
    object_names : list[str], optional
        List of object names to delete the data for. By default None
    """
    # build the query
    query = [
        sql.SQL("DELETE FROM performance.energy_targets WHERE (date >= {start} AND date <= {end})").format(
            start=sql.Literal(f"{period.start:%Y-%m-%d %H:%M:%S}"),
            end=sql.Literal(f"{period.end:%Y-%m-%d %H:%M:%S}"),
        ),
    ]
    if object_names:
        # getting object id
        obj_ids = self._perfdb.objects.instances.get_ids(object_names=object_names)
        if len(obj_ids) != len(object_names):
            missing_objs = set(object_names) - set(obj_ids)
            raise ValueError(f"Could not find the following objects: {missing_objs}")
        query.append(sql.SQL(" AND object_id IN ({ids})").format(ids=sql.SQL(", ").join(map(sql.Literal, obj_ids.values()))))

    query = sql.Composed(query)

    with self._perfdb.conn.reconnect() as conn:
        # deleting
        result = conn.execute(query)

    logger.debug(f"Deleted {result.rowcount} rows from energy_targets table")

get(period, time_res='daily', aggregation_window=None, object_or_group_names=None, object_group_types=None, measurement_points=None, filter_type='and', output_type='DataFrame', values_only=False)

Gets energy targets for the desired period and objects.

The most useful keys/columns returned are:

  • target
  • target_pxx
  • target_evaluation_period
  • target_resource_assessment_id

Parameters:

  • period

    (DateTimeRange) –

    Period of time to get the data for.

  • time_res

    (Literal['daily', 'monthly', 'quarterly', 'yearly'], default: 'daily' ) –

    Time resolution of the data. Can be one of ["daily", "monthly", "quarterly", "yearly"], by default "daily"

  • aggregation_window

    (Literal['mtd', 'ytd', '12m'] | None, default: None ) –

    Aggregation window to use. Can be one of ["mtd", "ytd", "12m"], by default None

  • object_or_group_names

    (list[str], default: None ) –

    List of object or group names to get the data for. By default None

  • object_group_types

    (list[str], default: None ) –

    List of object group types to get the data for. By default None

  • measurement_points

    (list[ALLOWED_MEASUREMENT_POINTS], default: None ) –

    List of measurement points to get the data for, like Connection Point, Gravity Center, Asset, etc. By default None

  • filter_type

    (Literal['and', 'or'], default: 'and' ) –

    How to treat multiple filters. Can be one of ["and", "or"]. By default "and"

  • output_type

    (Literal['dict', 'DataFrame'], default: 'DataFrame' ) –

    Output type of the data. Can be one of ["dict", "DataFrame"] By default "dict"

  • values_only

    (bool, default: False ) –

    If set to True, when returning a dict will only return the values, ignoring other attributes like modified_date. Is ignored when output_type is "DataFrame". By default False

Returns:

  • DataFrame

    In case output_type is "DataFrame", returns a DataFrame with the following format: index = MultiIndex["group_type_name", "object_or_group_name", "date"], columns = [target, modified_date]

  • dict[str, dict[Timestamp, dict[str, dict[str, Any]]]]

    In case output_type is "dict", returns a dictionary in the format {group_type_name: {object_or_group_name: {date: {attribute: value, ...}, ...}, ...}

Source code in echo_postgres/kpi_energy_targets.py
@validate_call
def get(
    self,
    period: DateTimeRange,
    time_res: Literal["daily", "monthly", "quarterly", "yearly"] = "daily",
    aggregation_window: Literal["mtd", "ytd", "12m"] | None = None,
    object_or_group_names: list[str] | None = None,
    object_group_types: list[str] | None = None,
    measurement_points: list[ALLOWED_MEASUREMENT_POINTS] | None = None,
    filter_type: Literal["and", "or"] = "and",
    output_type: Literal["dict", "DataFrame"] = "DataFrame",
    values_only: bool = False,
) -> DataFrame | dict[str, dict[Timestamp, dict[str, dict[str, Any]]]]:
    """Gets energy targets for the desired period and objects.

    The most useful keys/columns returned are:

    - target
    - target_pxx
    - target_evaluation_period
    - target_resource_assessment_id

    Parameters
    ----------
    period : DateTimeRange
        Period of time to get the data for.
    time_res : Literal["daily", "monthly", "quarterly", "yearly"], optional
        Time resolution of the data. Can be one of ["daily", "monthly", "quarterly", "yearly"], by default "daily"
    aggregation_window : Literal["mtd", "ytd", "12m"] | None, optional
        Aggregation window to use. Can be one of ["mtd", "ytd", "12m"], by default None
    object_or_group_names : list[str], optional
        List of object or group names to get the data for. By default None
    object_group_types : list[str], optional
        List of object group types to get the data for. By default None
    measurement_points : list[ALLOWED_MEASUREMENT_POINTS], optional
        List of measurement points to get the data for, like Connection Point, Gravity Center, Asset, etc. By default None
    filter_type : Literal["and", "or"], optional
        How to treat multiple filters. Can be one of ["and", "or"].
        By default "and"
    output_type : Literal["dict", "DataFrame"], optional
        Output type of the data. Can be one of ["dict", "DataFrame"]
        By default "dict"
    values_only : bool, optional
        If set to True, when returning a dict will only return the values, ignoring other attributes like modified_date. Is ignored when output_type is "DataFrame". By default False

    Returns
    -------
    DataFrame
        In case output_type is "DataFrame", returns a DataFrame with the following format: index = MultiIndex["group_type_name", "object_or_group_name", "date"], columns = [target, modified_date]
    dict[str, dict[Timestamp, dict[str, dict[str, Any]]]]
        In case output_type is "dict", returns a dictionary in the format {group_type_name: {object_or_group_name: {date: {attribute: value, ...}, ...}, ...}
    """
    # build the query
    query = [
        sql.SQL(
            "SELECT * FROM performance.{table} WHERE (date >= {start} AND date <= {end})",
        ).format(
            table=sql.Identifier(
                f"mv_energy_{time_res}{f'_{aggregation_window}' if aggregation_window else ''}",
            ),
            start=sql.Literal(f"{period.start:%Y-%m-%d %H:%M:%S}"),
            end=sql.Literal(f"{period.end:%Y-%m-%d %H:%M:%S}"),
        ),
    ]

    where = []
    if object_or_group_names:
        where.append(
            sql.SQL("object_or_group_name IN ({names})").format(
                names=sql.SQL(", ").join(map(sql.Literal, object_or_group_names)),
            ),
        )
    if object_group_types:
        where.append(
            sql.SQL("group_type_name IN ({names})").format(
                names=sql.SQL(", ").join(map(sql.Literal, object_group_types)),
            ),
        )
    if measurement_points:
        where.append(
            sql.SQL("measurement_point_name IN ({points})").format(
                points=sql.SQL(", ").join(map(sql.Literal, measurement_points)),
            ),
        )

    if where:
        query.append(sql.SQL(" AND ("))
        query.append(sql.SQL(f" {filter_type.upper()} ").join(where))
        query.append(sql.SQL(")"))

    query.append(sql.SQL(" ORDER BY object_or_group_name, group_type_name, date"))

    query = sql.Composed(query)

    with self._perfdb.conn.reconnect() as conn:
        df = conn.read_to_pandas(query, post_convert="pyarrow")
    # forcing date to be a Timestamp
    df["date"] = df["date"].astype("datetime64[s]")
    # forcing object_name and object_group_name to be a string
    df = df.astype(
        {"object_or_group_name": "string[pyarrow]", "group_type_name": "string[pyarrow]", "measurement_point_name": "string[pyarrow]"},
    )
    df = df.astype(
        {"object_or_group_id": "int64[pyarrow]", "group_type_id": "int64[pyarrow]", "measurement_point_id": "int16[pyarrow]"},
    )

    df = df.set_index(["group_type_name", "object_or_group_name", "measurement_point_name", "date"])

    # dropping value and efficiency columns

    df = df.drop(columns=["value", "efficiency"], errors="ignore")

    if output_type == "DataFrame":
        return df

    # dropping id columns not used in dict format
    df = df.drop(columns=[col for col in df.columns if col.endswith("_id")])
    # converting to Dict
    result = df.to_dict(orient="index")
    final_result = {}
    for (object_group_type_name, object_or_group_name, measurement_point_name, date), data in result.items():
        if object_group_type_name not in final_result:
            final_result[object_group_type_name] = {}
        if object_or_group_name not in final_result[object_group_type_name]:
            final_result[object_group_type_name][object_or_group_name] = {}
        if measurement_point_name not in final_result[object_group_type_name][object_or_group_name]:
            final_result[object_group_type_name][object_or_group_name][measurement_point_name] = {}
        if date not in final_result[object_group_type_name][object_or_group_name]:
            final_result[object_group_type_name][object_or_group_name][measurement_point_name][date] = (
                data["target"] if values_only else data
            )

    return final_result

insert(df, on_conflict='ignore')

Inserts energy targets into the database (table energy_targets)

Parameters:

  • df

    (DataFrame) –

    DataFrame with the following columns:

    • object_name
    • date
    • energy
    • pxx
    • evaluation_period (one of 'longterm', '1year', '1month')
  • on_conflict

    (Literal['ignore', 'update'], default: 'ignore' ) –

    What to do in case of conflict. Can be one of ["ignore", "update"]. By default "ignore"

Source code in echo_postgres/kpi_energy_targets.py
@validate_call
def insert(
    self,
    df: DataFrame,
    on_conflict: Literal["ignore", "update"] = "ignore",
) -> None:
    """Inserts energy targets into the database (table energy_targets)

    Parameters
    ----------
    df : DataFrame
        DataFrame with the following columns:

        - object_name
        - date
        - energy
        - pxx
        - evaluation_period (one of 'longterm', '1year', '1month')
    on_conflict : Literal["ignore", "update"], optional
        What to do in case of conflict. Can be one of ["ignore", "update"].
        By default "ignore"
    """
    # checking inputs
    if df.isna().any().any():
        raise ValueError("df cannot have NaN values")
    if set(df.columns) != {"object_name", "date", "energy", "pxx", "evaluation_period"}:
        additional_cols = set(df.columns) - {"object_name", "date", "energy", "pxx", "evaluation_period"}
        missing_cols = {"object_name", "date", "energy", "pxx", "evaluation_period"} - set(df.columns)
        raise ValueError(
            f"df must have the following columns: object_name, date, energy, pxx, evaluation_period. Additional columns: {additional_cols}. Missing columns: {missing_cols}",
        )

    # getting object id
    wanted_objs = df["object_name"].unique().tolist()
    obj_ids = self._perfdb.objects.instances.get_ids(object_names=wanted_objs)
    if len(obj_ids) != len(wanted_objs):
        missing_objs = set(wanted_objs) - set(obj_ids)
        raise ValueError(f"Could not find the following objects: {missing_objs}")
    df["object_id"] = df["object_name"].map(obj_ids)

    # removing unwanted columns
    df = df.drop(columns=["object_name"])

    # converting energy column to float
    df["energy"] = df["energy"].astype("float32")
    # converting pxx column to float
    df["pxx"] = df["pxx"].astype("float32")
    # checking evaluation_period values
    allowed_eval_periods = ["longterm", "1year", "1month"]
    if not df["evaluation_period"].isin(allowed_eval_periods).all():
        invalid_values = df.loc[~df["evaluation_period"].isin(allowed_eval_periods), "evaluation_period"].unique().tolist()
        raise ValueError(
            f"evaluation_period column can only have the following values: {allowed_eval_periods}. Invalid values found: {invalid_values}",
        )

    # inserting data
    if_exists_mapping = {
        "ignore": "append",
        "update": "update",
    }
    with self._perfdb.conn.reconnect() as conn:
        conn.pandas_to_sql(
            df=df,
            table_name="energy_targets",
            schema="performance",
            if_exists=if_exists_mapping[on_conflict],
            ignore_index=True,
        )

    logger.debug("Energy targets inserted into the database")