KPI Resource Types¶
KpiResourceTypes(perfdb)
¶
Class used for handling resource types (wind speed, solar irradiance, etc).
Parameters:
Source code in echo_postgres/perfdb_root.py
def __init__(self, perfdb: e_pg.PerfDB) -> None:
"""Base class that all subclasses should inherit from.
Parameters
----------
perfdb : PerfDB
Top level object carrying all functionality and the connection handler.
"""
self._perfdb: e_pg.PerfDB = perfdb
get(output_type='dict')
¶
Gets the possible resource types.
The most useful keys/columns returned are:
- id
- bazefield_point
Parameters:
-
(output_type¶Literal['dict', 'DataFrame'], default:'dict') –Output type of the data. Can be one of ["dict", "DataFrame"] By default "dict"
Returns:
-
DataFrame–In case output_type is "DataFrame", returns a DataFrame with the following format: index = name, columns = [description, id]
-
dict[str, dict[str, str]]–In case output_type is "dict", returns a dictionary in the format {name: {attribute: value, ...}, ...}
Source code in echo_postgres/kpi_resource_types.py
@validate_call
def get(
self,
output_type: Literal["dict", "DataFrame"] = "dict",
) -> DataFrame | dict[str, dict[str, str]]:
"""Gets the possible resource types.
The most useful keys/columns returned are:
- id
- bazefield_point
Parameters
----------
output_type : Literal["dict", "DataFrame"], optional
Output type of the data. Can be one of ["dict", "DataFrame"]
By default "dict"
Returns
-------
DataFrame
In case output_type is "DataFrame", returns a DataFrame with the following format: index = name, columns = [description, id]
dict[str, dict[str, str]]
In case output_type is "dict", returns a dictionary in the format {name: {attribute: value, ...}, ...}
"""
# validate the input
if output_type not in ["dict", "DataFrame"]:
raise ValueError(f"output_type must be one of ['dict', 'DataFrame'], got {output_type}")
# build the query
query = sql.SQL("SELECT * FROM performance.resource_types")
with self._perfdb.conn.reconnect() as conn:
df = conn.read_to_pandas(query, post_convert="pyarrow")
df = df.set_index("name")
return df if output_type == "DataFrame" else df.to_dict(orient="index")
get_ids()
¶
Gets the possible resource types.
Returns:
-
dict[str, int]–A dictionary in the format {name: id, ...}
Source code in echo_postgres/kpi_resource_types.py
def get_ids(self) -> dict[str, int]:
"""Gets the possible resource types.
Returns
-------
dict[str, int]
A dictionary in the format {name: id, ...}
"""
query = sql.SQL("SELECT name, id FROM performance.resource_types")
with self._perfdb.conn.reconnect() as conn:
data = conn.read_to_pandas(query, post_convert="pyarrow")
data = data.set_index("name")
return data["id"].to_dict()