Skip to content

KPI Resource Values

KpiResourceValues(perfdb)

Class used for handling resource KPI values. Can be accessed via perfdb.kpis.resource.values.

Parameters:

  • perfdb

    (PerfDB) –

    Top level object carrying all functionality and the connection handler.

Source code in echo_postgres/perfdb_root.py
def __init__(self, perfdb: e_pg.PerfDB) -> None:
    """Base class that all subclasses should inherit from.

    Parameters
    ----------
    perfdb : PerfDB
        Top level object carrying all functionality and the connection handler.

    """
    self._perfdb: e_pg.PerfDB = perfdb

delete(period, object_names=None, resource_types=None)

Deletes resource values from the database.

Parameters:

  • period

    (DateTimeRange) –

    Period of time to delete the data for.

  • object_names

    (list[str], default: None ) –

    List of object names to delete the data for. By default None

  • resource_types

    (list[str], default: None ) –

    List of resource types to delete the data for. By default None

Source code in echo_postgres/kpi_resource_values.py
@validate_call
def delete(
    self,
    period: DateTimeRange,
    object_names: list[str] | None = None,
    resource_types: list[str] | None = None,
) -> None:
    """Deletes resource values from the database.

    Parameters
    ----------
    period : DateTimeRange
        Period of time to delete the data for.
    object_names : list[str], optional
        List of object names to delete the data for. By default None
    resource_types : list[str], optional
        List of resource types to delete the data for. By default None
    """
    # validate the input
    if resource_types:
        rs_ids = self._perfdb.kpis.resource.types.get_ids()
        if wrong_rst := set(resource_types) - set(rs_ids):
            raise ValueError(f"Could not find the following resource types: {wrong_rst}")

    # build the query
    query = [
        sql.SQL("DELETE FROM performance.resource_values WHERE (date >= {start} AND date <= {end})").format(
            start=sql.Literal(f"{period.start:%Y-%m-%d %H:%M:%S}"),
            end=sql.Literal(f"{period.end:%Y-%m-%d %H:%M:%S}"),
        ),
    ]
    if object_names:
        # getting object id
        obj_ids = self._perfdb.objects.instances.get_ids(object_names=object_names)
        if len(obj_ids) != len(object_names):
            missing_objs = set(object_names) - set(obj_ids)
            raise ValueError(f"Could not find the following objects: {missing_objs}")
        query.append(sql.SQL(" AND object_id IN ({ids})").format(ids=sql.SQL(", ").join(map(sql.Literal, obj_ids.values()))))
    if resource_types:
        rs_ids = {rt: rs_ids[rt] for rt in resource_types}
        query.append(sql.SQL(" AND resource_type_id IN ({ids})").format(ids=sql.SQL(", ").join(map(sql.Literal, rs_ids.values()))))

    query = sql.Composed(query)

    with self._perfdb.conn.reconnect() as conn:
        # deleting
        result = conn.execute(query)

    logger.debug(f"Deleted {result.rowcount} rows from resource_values table")

get(period, time_res='daily', aggregation_window=None, object_or_group_names=None, object_group_types=None, resource_types=None, filter_type='and', output_type='DataFrame', values_only=False)

Gets resource values for the desired period and objects.

The most useful keys/columns returned are:

  • value

Parameters:

  • period

    (DateTimeRange) –

    Period of time to get the data for.

  • time_res

    (Literal['daily', 'monthly', 'quarterly', 'yearly'], default: 'daily' ) –

    Time resolution of the data. Can be one of ["daily", "monthly", "quarterly", "yearly"], by default "daily"

  • aggregation_window

    (Literal['mtd', 'ytd', '12m'] | None, default: None ) –

    Aggregation window to use. Can be one of ["mtd", "ytd", "12m"], by default None

  • object_or_group_names

    (list[str], default: None ) –

    List of object or group names to get the data for. By default None

  • object_group_types

    (list[str], default: None ) –

    List of object group types to get the data for. By default None

  • resource_types

    (list[str], default: None ) –

    List of resource types to delete the data for. By default None

  • filter_type

    (Literal['and', 'or'], default: 'and' ) –

    How to treat multiple filters. Can be one of ["and", "or"]. By default "and"

  • output_type

    (Literal['dict', 'DataFrame'], default: 'DataFrame' ) –

    Output type of the data. Can be one of ["dict", "DataFrame"] By default "dict"

  • values_only

    (bool, default: False ) –

    If set to True, when returning a dict will only return the values, ignoring other attributes like modified_date. Is ignored when output_type is "DataFrame". By default False

Returns:

  • DataFrame

    In case output_type is "DataFrame", returns a DataFrame with the following format: index = MultiIndex["group_type_name", "object_or_group_name", "resource_type_name", "date"], columns = [resource, modified_date]

  • dict[str, dict[Timestamp, dict[str, dict[str, Any]]]]

    In case output_type is "dict", returns a dictionary in the format {group_type_name: {object_or_group_name: {date: {resource_type_name: {attribute: value, ...}, ...}, ...}, ...}

Source code in echo_postgres/kpi_resource_values.py
@validate_call
def get(
    self,
    period: DateTimeRange,
    time_res: Literal["daily", "monthly", "quarterly", "yearly"] = "daily",
    aggregation_window: Literal["mtd", "ytd", "12m"] | None = None,
    object_or_group_names: list[str] | None = None,
    object_group_types: list[str] | None = None,
    resource_types: list[str] | None = None,
    filter_type: Literal["and", "or"] = "and",
    output_type: Literal["dict", "DataFrame"] = "DataFrame",
    values_only: bool = False,
) -> DataFrame | dict[str, dict[Timestamp, dict[str, dict[str, Any]]]]:
    """Gets resource values for the desired period and objects.

    The most useful keys/columns returned are:

    - value

    Parameters
    ----------
    period : DateTimeRange
        Period of time to get the data for.
    time_res : Literal["daily", "monthly", "quarterly", "yearly"], optional
        Time resolution of the data. Can be one of ["daily", "monthly", "quarterly", "yearly"], by default "daily"
    aggregation_window : Literal["mtd", "ytd", "12m"] | None, optional
        Aggregation window to use. Can be one of ["mtd", "ytd", "12m"], by default None
    object_or_group_names : list[str], optional
        List of object or group names to get the data for. By default None
    object_group_types : list[str], optional
        List of object group types to get the data for. By default None
    resource_types : list[str], optional
        List of resource types to delete the data for. By default None
    filter_type : Literal["and", "or"], optional
        How to treat multiple filters. Can be one of ["and", "or"].
        By default "and"
    output_type : Literal["dict", "DataFrame"], optional
        Output type of the data. Can be one of ["dict", "DataFrame"]
        By default "dict"
    values_only : bool, optional
        If set to True, when returning a dict will only return the values, ignoring other attributes like modified_date. Is ignored when output_type is "DataFrame". By default False

    Returns
    -------
    DataFrame
        In case output_type is "DataFrame", returns a DataFrame with the following format: index = MultiIndex["group_type_name", "object_or_group_name", "resource_type_name", "date"], columns = [resource, modified_date]
    dict[str, dict[Timestamp, dict[str, dict[str, Any]]]]
        In case output_type is "dict", returns a dictionary in the format {group_type_name: {object_or_group_name: {date: {resource_type_name: {attribute: value, ...}, ...}, ...}, ...}
    """
    # build the query
    query = [
        sql.SQL(
            "SELECT * FROM performance.{table} WHERE (date >= {start} AND date <= {end})",
        ).format(
            table=sql.Identifier(
                f"mv_resource_values_{time_res}{f'_{aggregation_window}' if aggregation_window else ''}",
            ),
            start=sql.Literal(f"{period.start:%Y-%m-%d %H:%M:%S}"),
            end=sql.Literal(f"{period.end:%Y-%m-%d %H:%M:%S}"),
        ),
    ]

    where = []
    if object_or_group_names:
        where.append(
            sql.SQL("object_or_group_name IN ({names})").format(
                names=sql.SQL(", ").join(map(sql.Literal, object_or_group_names)),
            ),
        )
    if object_group_types:
        where.append(
            sql.SQL("group_type_name IN ({names})").format(
                names=sql.SQL(", ").join(map(sql.Literal, object_group_types)),
            ),
        )
    if resource_types:
        where.append(
            sql.SQL("resource_type_name IN ({points})").format(
                points=sql.SQL(", ").join(map(sql.Literal, resource_types)),
            ),
        )

    if where:
        query.append(sql.SQL(" AND ("))
        query.append(sql.SQL(f" {filter_type.upper()} ").join(where))
        query.append(sql.SQL(")"))

    query.append(sql.SQL(" ORDER BY object_or_group_name, group_type_name, resource_type_name, date"))

    query = sql.Composed(query)

    with self._perfdb.conn.reconnect() as conn:
        df = conn.read_to_pandas(query, post_convert="pyarrow")
    # forcing date to be a Timestamp
    df["date"] = df["date"].astype("datetime64[s]")
    # forcing object_name and object_group_name to be a string
    df = df.astype(
        {"object_or_group_name": "string[pyarrow]", "group_type_name": "string[pyarrow]", "resource_type_name": "string[pyarrow]"},
    )
    df = df.astype(
        {"object_or_group_id": "int64[pyarrow]", "group_type_id": "int64[pyarrow]", "resource_type_id": "int16[pyarrow]"},
    )

    df = df.set_index(["group_type_name", "object_or_group_name", "resource_type_name", "date"])

    if output_type == "DataFrame":
        return df

    # dropping id columns not used in dict format
    df = df.drop(columns=[col for col in df.columns if col.endswith("_id")])
    # converting to Dict
    result = df.to_dict(orient="index")
    final_result = {}
    for (object_group_type_name, object_or_group_name, resource_type_name, date), data in result.items():
        if object_group_type_name not in final_result:
            final_result[object_group_type_name] = {}
        if object_or_group_name not in final_result[object_group_type_name]:
            final_result[object_group_type_name][object_or_group_name] = {}
        if resource_type_name not in final_result[object_group_type_name][object_or_group_name]:
            final_result[object_group_type_name][object_or_group_name][resource_type_name] = {}
        if date not in final_result[object_group_type_name][object_or_group_name]:
            final_result[object_group_type_name][object_or_group_name][resource_type_name][date] = (
                data["value"] if values_only else data
            )

    return final_result

insert(df, on_conflict='ignore')

Inserts resource values into the database (table resource_values)

Parameters:

  • df

    (DataFrame) –

    DataFrame with the following columns:

    • object_name
    • date
    • resource_type ('wind_speed', 'solar_irradiance_poa', ...)
    • value
  • on_conflict

    (Literal['ignore', 'update'], default: 'ignore' ) –

    What to do in case of conflict. Can be one of ["ignore", "update"]. By default "ignore"

Source code in echo_postgres/kpi_resource_values.py
@validate_call
def insert(
    self,
    df: DataFrame,
    on_conflict: Literal["ignore", "update"] = "ignore",
) -> None:
    """Inserts resource values into the database (table resource_values)

    Parameters
    ----------
    df : DataFrame
        DataFrame with the following columns:

        - object_name
        - date
        - resource_type ('wind_speed', 'solar_irradiance_poa', ...)
        - value
    on_conflict : Literal["ignore", "update"], optional
        What to do in case of conflict. Can be one of ["ignore", "update"].
        By default "ignore"
    """
    # checking inputs
    required_columns = {"object_name", "date", "resource_type", "value"}
    if df.isna().any().any():
        raise ValueError("df cannot have NaN values")
    if set(df.columns) != required_columns:
        additional_cols = set(df.columns) - required_columns
        missing_cols = required_columns - set(df.columns)
        raise ValueError(
            f"df must have the following columns: object_name, date, resource_type, value. Additional columns: {additional_cols}. Missing columns: {missing_cols}",
        )

    # making a copy of df
    df = df.copy()

    # getting object id
    wanted_objs = df["object_name"].unique().tolist()
    obj_ids = self._perfdb.objects.instances.get_ids(object_names=wanted_objs)
    if len(obj_ids) != len(wanted_objs):
        missing_objs = set(wanted_objs) - set(obj_ids)
        raise ValueError(f"Could not find the following objects: {missing_objs}")
    df["object_id"] = df["object_name"].map(obj_ids)

    # getting resource type id
    wanted_resource_types = df["resource_type"].unique().tolist()
    rt_ids = self._perfdb.kpis.resource.types.get_ids()
    if wrong_rt := set(wanted_resource_types) - set(rt_ids.keys()):
        raise ValueError(f"Could not find the following measurement points: {wrong_rt}")
    df["resource_type_id"] = df["resource_type"].map(rt_ids)

    # removing unwanted columns
    df = df.drop(columns=["object_name", "resource_type"])

    # converting resource column to float
    df["value"] = df["value"].astype("float32")

    # checking if there are NaNs in resource column
    nan_rows = df[df["value"].isna()].index
    if len(nan_rows) > 0:
        logger.warning(
            f"Found NaN values in value column. Dropping {len(nan_rows)} rows (indexes: {df['date'].loc[nan_rows].tolist()})",
        )
        df = df[~df.index.isin(nan_rows)].copy()

    # inserting data
    if_exists_mapping = {
        "ignore": "append",
        "update": "update",
    }
    with self._perfdb.conn.reconnect() as conn:
        conn.pandas_to_sql(
            df=df,
            table_name="resource_values",
            schema="performance",
            if_exists=if_exists_mapping[on_conflict],
            ignore_index=True,
        )

    logger.debug("Resource values inserted into the database")

sync_bazefield(period, object_names=None, resource_types=None, overwrite=False)

Method to get resource KPIs numbers from Bazefield and insert them into the database.

This will save the results in the table "resource_values" of performance_db.

Parameters:

  • period

    (DateTimeRange) –

    Period to get resource KPIs numbers from Bazefield. Values will be rounded to the nearest day. Its recommended that the start is at 00:00:00 and the end is at 23:59:59.

  • object_names

    (list[str] | None, default: None ) –

    Name of the objects to get the resource values from. If set to None will get all that match the object types allowed in ALLOWED_RESOURCE_OBJECT_MODELS. By default None

  • resource_types

    (list[str] | None, default: None ) –

    List of measurement points to get the availability from. Usually 'wind_speed' or 'solar_irradiance_poa' should be used. By default None

  • overwrite

    (bool, default: False ) –

    If set to True, will overwrite the existing values in the database, by default False

Returns:

  • DataFrame

    DataFrame with resource values inserted in the database

Source code in echo_postgres/kpi_resource_values.py
@validate_call
def sync_bazefield(
    self,
    period: DateTimeRange,
    object_names: list[str] | None = None,
    resource_types: list[str] | None = None,
    overwrite: bool = False,
) -> DataFrame:
    """Method to get resource KPIs numbers from Bazefield and insert them into the database.

    This will save the results in the table "resource_values" of performance_db.

    Parameters
    ----------
    period : DateTimeRange
        Period to get resource KPIs numbers from Bazefield. Values will be rounded to the nearest day.
        Its recommended that the start is at 00:00:00 and the end is at 23:59:59.
    object_names : list[str] | None, optional
        Name of the objects to get the resource values from. If set to None will get all that match the object types allowed in ALLOWED_RESOURCE_OBJECT_MODELS.
        By default None
    resource_types : list[str] | None, optional
        List of measurement points to get the availability from. Usually 'wind_speed' or 'solar_irradiance_poa' should be used. By default None
    overwrite : bool, optional
        If set to True, will overwrite the existing values in the database, by default False

    Returns
    -------
    DataFrame
        DataFrame with resource values inserted in the database
    """
    # imported here to avoid circular imports
    from echo_meteo.utils import resample_mean

    t0 = perf_counter()

    # adjusting period to cover the whole day
    period = period.copy()
    period = period.round(timedelta(days=1), start="floor", end="ceil")

    # getting all objects that are allowed to have resource values
    allowed_objects = {}
    for resource_type, allowed_object_models in ALLOWED_RESOURCE_OBJECT_MODELS.items():
        if resource_types and resource_type not in resource_types:
            continue
        objs = self._perfdb.objects.instances.get_ids(object_models=allowed_object_models)
        allowed_objects[resource_type] = list(objs.keys())

    #  checking if provided object names are valid
    if object_names is None:
        object_names = allowed_objects
    else:
        not_found_objs = []
        found_objs = {}
        for obj in object_names:
            found_obj = False
            for resource_type, objs in allowed_objects.items():
                if obj in objs:
                    found_obj = True
                    if resource_type not in found_objs:
                        found_objs[resource_type] = []
                    found_objs[resource_type].append(obj)
                    break
            if not found_obj:
                not_found_objs.append(obj)
        if not_found_objs:
            raise ValueError(
                f"Could not find the following objects {not_found_objs} considering resource types {list(allowed_objects.keys())}",
            )
        object_names = found_objs

    # getting resource type definitions to get bazefield point
    resource_types_def = self._perfdb.kpis.resource.types.get(output_type="dict")

    # creating connection to Bazefield
    baze = Baze()

    # iterating each resource type
    for resource_type, objects in object_names.items():
        # getting the bazefield point for the resource type
        bazefield_point = resource_types_def[resource_type]["bazefield_point"]
        # getting values from tag for all objects
        wanted_points = {obj: [bazefield_point] for obj in objects}
        point_period = period.copy()
        point_period.start = point_period.start - timedelta(minutes=10)
        point_period.end = point_period.end + timedelta(minutes=10)

        # regex to get 5min or 10min from bazefield point
        feature_freq = re.findall(r"\d{1,2}min", bazefield_point)
        if not feature_freq:
            raise ValueError(f"Could not find frequency in {bazefield_point}")
        if len(feature_freq) > 1:
            raise ValueError(f"Found more than one frequency in {bazefield_point}")
        feature_freq = feature_freq[0]

        # getting values
        values = baze.points.values.series.get(points=wanted_points, reindex=feature_freq, period=point_period)

        # filling with zero (only needed as currently we might have missing values at night for irradiance features), we should delete this in the future to avoid these zero values changing the mean incorrectly
        values = values.fillna(0.0)

        # dropping second level
        values = values.droplevel(1, axis=1)

        # resampling to day
        daily_values = resample_mean(values, "D", min_rr=0.3)

        # adjusting values to upload to the database

        # melting the DataFrame
        values = daily_values.reset_index().melt(id_vars="index", var_name="object_name", value_name="value")
        values = values.rename(columns={"index": "date"})
        values["resource_type"] = resource_type

        # removing outside period
        values = values[
            (values["date"] >= period.start) & (values["date"] < period.end)
        ]  # < used at end to avoid including the next day at 00:00:00

        # checking if any rows have values lower or equal to to 0 (invalid)
        wrong_idx = values[values["value"] <= 0].index
        if len(wrong_idx) > 0:
            logger.warning(
                f"Found {len(wrong_idx)} rows with values lower or equal to 0. Dropping these rows \n{values.loc[wrong_idx]}",
            )
            values = values[~values.index.isin(wrong_idx)].copy()

        # inserting resource data into the database
        logger.info("Inserting resource values data into the database")

        self.insert(df=values, on_conflict="update" if overwrite else "ignore")

        logger.info(
            f"Resource values for {resource_type} inserted into the database in {perf_counter() - t0:.2f} seconds. Period {period} and objects {objects}",
        )

    del baze

    return values