Operatins UST¶
OperationsUST(perfdb)
¶
Class used for handling TUST values. Can be accessed via perfdb.operations.ust.
Parameters:
Source code in echo_postgres/perfdb_root.py
def __init__(self, perfdb: e_pg.PerfDB) -> None:
"""Base class that all subclasses should inherit from.
Parameters
----------
perfdb : PerfDB
Top level object carrying all functionality and the connection handler.
"""
self._perfdb: e_pg.PerfDB = perfdb
delete(period, attributes_names=None, object_names=None)
¶
Deletes TUST/MUST values from the database.
Parameters:
-
(period¶DateTimeRange) –Period of time to delete the data for.
-
(attributes_names¶list[Literal['must', 'tust']], default:None) –List of attribute names to delete. Can be ["must"], ["tust"], or ["must", "tust"]. By default ["must", "tust"] (both values are deleted)
-
(object_names¶list[str], default:None) –List of object names to delete the data for. By default None (all objects)
Source code in echo_postgres/operations_ust.py
@validate_call
def delete(
self,
period: DateTimeRange,
attributes_names: list[Literal["must", "tust"]] | None = None,
object_names: list[str] | None = None,
) -> None:
"""Deletes TUST/MUST values from the database.
Parameters
----------
period : DateTimeRange
Period of time to delete the data for.
attributes_names : list[Literal["must", "tust"]], optional
List of attribute names to delete. Can be ["must"], ["tust"], or ["must", "tust"].
By default ["must", "tust"] (both values are deleted)
object_names : list[str], optional
List of object names to delete the data for. By default None (all objects)
"""
# Default to deleting both "must" and "tust" if not specified
if attributes_names is None:
attributes_names = ["must", "tust"]
# Normalize attribute names to database column names
attributes_mapping = {
"must": "must_value",
"tust": "tust_value",
}
valid_attrs = set(attributes_mapping.keys())
invalid_attrs = set(attributes_names) - valid_attrs
if invalid_attrs:
raise ValueError(
f"Invalid attribute names: {invalid_attrs}. Must be one of: {sorted(valid_attrs)}",
)
# Map to database column names
columns_to_delete = [attributes_mapping[attr] for attr in attributes_names]
# Build the query
if set(columns_to_delete) == {"must_value", "tust_value"}:
# Delete entire rows when both columns are selected
query = [
sql.SQL("DELETE FROM performance.ust_values WHERE (date >= {start} AND date <= {end})").format(
start=sql.Literal(f"{period.start:%Y-%m-%d %H:%M:%S}"),
end=sql.Literal(f"{period.end:%Y-%m-%d %H:%M:%S}"),
),
]
else:
# Update specific columns to NULL when only one is selected
set_clause = sql.SQL(", ").join(sql.SQL("{col} = NULL").format(col=sql.Identifier(col)) for col in columns_to_delete)
query = [
sql.SQL("UPDATE performance.ust_values SET {set_clause} WHERE (date >= {start} AND date <= {end})").format(
set_clause=set_clause,
start=sql.Literal(f"{period.start:%Y-%m-%d %H:%M:%S}"),
end=sql.Literal(f"{period.end:%Y-%m-%d %H:%M:%S}"),
),
]
if object_names:
# getting object id
obj_ids = self._perfdb.objects.instances.get_ids(object_names=object_names)
if len(obj_ids) != len(object_names):
missing_objs = set(object_names) - set(obj_ids)
raise ValueError(f"Could not find the following objects: {missing_objs}")
query.append(sql.SQL(" AND object_id IN ({ids})").format(ids=sql.SQL(", ").join(map(sql.Literal, obj_ids.values()))))
query = sql.Composed(query)
with self._perfdb.conn.reconnect() as conn:
result = conn.execute(query)
deleted_attrs = ", ".join([attr.upper() for attr in attributes_names])
logger.debug(f"Deleted {result.rowcount} rows - {deleted_attrs} values removed from ust_values table")
get(period, object_names=None, attributes_names=None, filter_type='and', output_type='DataFrame', values_only=False)
¶
Gets TUST values for the desired period and objects.
The most useful keys/columns returned are:
- must_value
- tust_value
Parameters:
-
(period¶DateTimeRange) –Period of time to get the data for.
-
(object_names¶list[str], default:None) –List of object names to get the data for. By default None (meaning all objects). -
(attributes_names¶list[str], default:None) –List of attribute names to get the data for, can be "Must" or "Tust". By default None (meaning all attributes).
-
(filter_type¶Literal['and', 'or'], default:'and') –How to treat multiple filters. Can be one of ["and", "or"]. By default "and"
-
(output_type¶Literal['dict', 'DataFrame'], default:'DataFrame') –Output type of the data. Can be one of ["dict", "DataFrame"] By default "dict"
-
(values_only¶bool, default:False) –If set to True, when returning a dict will only return the values, ignoring other attributes like modified_date. Is ignored when output_type is "DataFrame". By default False
Returns:
-
DataFrame–In case output_type is "DataFrame", returns a DataFrame with the following format: index = MultiIndex["object_name", "date"], columns = [values, modified_date]
-
dict[str, dict[Timestamp, dict[str, dict[str, Any]]]]–In case output_type is "dict", returns a dictionary in the format {group_type_name: {object_name: {date: {attribute: value, ...}, ...}, ...}
Source code in echo_postgres/operations_ust.py
@validate_call
def get(
self,
period: DateTimeRange,
object_names: list[str] | None = None,
attributes_names: list[Literal["Must", "Tust"]] | None = None,
filter_type: Literal["and", "or"] = "and",
output_type: Literal["dict", "DataFrame"] = "DataFrame",
values_only: bool = False,
) -> DataFrame | dict[str, dict[Timestamp, dict[str, dict[str, Any]]]]:
"""Gets TUST values for the desired period and objects.
The most useful keys/columns returned are:
- must_value
- tust_value
Parameters
----------
period : DateTimeRange
Period of time to get the data for.
object_names : list[str], optional
List of object names to get the data for. By default None (meaning all objects).
attributes_names : list[str], optional
List of attribute names to get the data for, can be "Must" or "Tust". By default None (meaning all attributes).
filter_type : Literal["and", "or"], optional
How to treat multiple filters. Can be one of ["and", "or"].
By default "and"
output_type : Literal["dict", "DataFrame"], optional
Output type of the data. Can be one of ["dict", "DataFrame"]
By default "dict"
values_only : bool, optional
If set to True, when returning a dict will only return the values, ignoring other attributes like modified_date. Is ignored when output_type is "DataFrame". By default False
Returns
-------
DataFrame
In case output_type is "DataFrame", returns a DataFrame with the following format: index = MultiIndex["object_name", "date"], columns = [values, modified_date]
dict[str, dict[Timestamp, dict[str, dict[str, Any]]]]
In case output_type is "dict", returns a dictionary in the format {group_type_name: {object_name: {date: {attribute: value, ...}, ...}, ...}
"""
# Adjust period to first day of the month for start and end dates
adjusted_start = period.start.replace(day=1, hour=0, minute=0, second=0, microsecond=0)
adjusted_end = period.end.replace(day=1, hour=0, minute=0, second=0, microsecond=0)
# Normalize attribute names from user input to database column names
if attributes_names:
attributes_mapping = {
"Must": "must_value",
"Tust": "tust_value",
}
valid_attrs = set(attributes_mapping.keys()) | set(attributes_mapping.values())
invalid_attrs = set(attributes_names) - valid_attrs
if invalid_attrs:
raise ValueError(
f"Invalid attribute names: {invalid_attrs}. Must be one of: {sorted(valid_attrs)}",
)
attributes_names = [attributes_mapping.get(attr, attr) for attr in attributes_names]
# build the query
query = [
sql.SQL(
"SELECT object_id, object_name, date, {attributes}, modified_date FROM performance.{table} WHERE (date >= {start} AND date <= {end})",
).format(
attributes=sql.SQL(", ").join(map(sql.Identifier, attributes_names))
if attributes_names
else sql.SQL("must_value, tust_value"),
table=sql.Identifier("v_ust_values"),
start=sql.Literal(f"{adjusted_start:%Y-%m-%d %H:%M:%S}"),
end=sql.Literal(f"{adjusted_end:%Y-%m-%d %H:%M:%S}"),
),
]
where = []
if object_names:
where.append(
sql.SQL("object_name IN ({names})").format(
names=sql.SQL(", ").join(map(sql.Literal, object_names)),
),
)
if where:
query.append(sql.SQL(" AND ("))
query.append(sql.SQL(f" {filter_type.upper()} ").join(where))
query.append(sql.SQL(")"))
query.append(sql.SQL(" ORDER BY object_name, date"))
query = sql.Composed(query)
with self._perfdb.conn.reconnect() as conn:
df = conn.read_to_pandas(query, post_convert="pyarrow")
# forcing date to be a Timestamp
df["date"] = df["date"].astype("datetime64[s]")
# forcing object_name to be a string
df = df.astype(
{"object_name": "string[pyarrow]"},
)
df = df.astype(
{"object_id": "int64[pyarrow]"},
)
df = df.set_index(["object_name", "date"])
if output_type == "DataFrame":
return df
# dropping id columns not used in dict format
df = df.drop(columns=[col for col in df.columns if col.endswith("_id")])
# converting to Dict
result = df.to_dict(orient="index")
final_result = {}
# Get all value columns (excluding modified_date)
value_columns = [col for col in df.columns if col != "modified_date"]
for (object_name, date), data in result.items():
if object_name not in final_result:
final_result[object_name] = {}
if date not in final_result[object_name]:
if values_only:
final_result[object_name][date] = {col: data[col] for col in value_columns}
else:
final_result[object_name][date] = data
return final_result
insert(df, on_conflict='ignore')
¶
Inserts TUST or MUST values into the database (table ust_values)
Parameters:
-
(df¶DataFrame) –DataFrame with the following columns:
- object_name
- date (must be a date referring to the beginning of the month)
- must_value and/or tust_value (at least one must be present)
-
(on_conflict¶Literal['ignore', 'update'], default:'ignore') –What to do in case of conflict. Can be one of ["ignore", "update"]. By default "ignore"
Source code in echo_postgres/operations_ust.py
@validate_call
def insert(
self,
df: DataFrame,
on_conflict: Literal["ignore", "update"] = "ignore",
) -> None:
"""Inserts TUST or MUST values into the database (table ust_values)
Parameters
----------
df : DataFrame
DataFrame with the following columns:
- object_name
- date (must be a date referring to the beginning of the month)
- must_value and/or tust_value (at least one must be present)
on_conflict : Literal["ignore", "update"], optional
What to do in case of conflict. Can be one of ["ignore", "update"].
By default "ignore"
"""
# checking inputs
if df.isna().any().any():
raise ValueError("df cannot have NaN values")
required_cols = {"object_name", "date"}
value_cols = {"must_value", "tust_value"}
actual_cols = set(df.columns)
# Validate required columns exist
if not required_cols.issubset(actual_cols):
missing_cols = required_cols - actual_cols
raise ValueError(f"df must have the following columns: {missing_cols}")
# Validate at least one value column exists
present_value_cols = actual_cols & value_cols
if not present_value_cols:
raise ValueError("df must have at least one of the following columns: must_value, tust_value")
# Check for unexpected columns
expected_cols = required_cols | value_cols
additional_cols = actual_cols - expected_cols
if additional_cols:
raise ValueError(f"Unexpected columns found: {additional_cols}")
# Only let date be a value with day 1 of the month
if not all(df["date"].dt.day == 1):
raise ValueError("The value is monthly, so enter a date that represents the entire month (day 01)")
# getting object id
wanted_objs = df["object_name"].unique().tolist()
obj_ids = self._perfdb.objects.instances.get_ids(object_names=wanted_objs)
if len(obj_ids) != len(wanted_objs):
missing_objs = set(wanted_objs) - set(obj_ids)
raise ValueError(f"Could not find the following objects: {missing_objs}")
df = df.copy()
df["object_id"] = df["object_name"].map(obj_ids)
df = df.drop(columns=["object_name"])
# converting value columns to float
for col in present_value_cols:
df[col] = df[col].astype("float32")
# Prepare DataFrame with required columns for single insert (only present value columns)
columns_to_insert = ["object_id", "date", *sorted(present_value_cols)]
df_to_insert = df[columns_to_insert].copy()
# Single insert operation
if_exists_mapping = {
"ignore": "append",
"update": "update",
}
with self._perfdb.conn.reconnect() as conn:
conn.pandas_to_sql(
df=df_to_insert,
table_name="ust_values",
schema="performance",
if_exists=if_exists_mapping[on_conflict],
ignore_index=True,
)
inserted_attrs = ", ".join([col.replace("_value", "").upper() for col in present_value_cols])
logger.debug(f"{inserted_attrs} values inserted into the database in a single operation")